Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
1.
Commun Biol ; 7(1): 436, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600295

RESUMO

Oviraptorosaurians were a theropod dinosaur group that reached high diversity in the Late Cretaceous. Within oviraptorosaurians, the later diverging oviraptorids evolved distinctive crania which were extensively pneumatised, short and tall, and had a robust toothless beak, interpreted as providing a powerful bite for their herbivorous to omnivorous diet. The present study explores the ability of oviraptorid crania to resist large mechanical stresses compared with other theropods and where this adaptation originated within oviraptorosaurians. Digital 3D cranial models were constructed for the earliest diverging oviraptorosaurian, Incisivosaurus gauthieri, and three oviraptorids, Citipati osmolskae, Conchoraptor gracilis, and Khaan mckennai. Finite element analyses indicate oviraptorosaurian crania were stronger than those of other herbivorous theropods (Erlikosaurus and Ornithomimus) and were more comparable to the large, carnivorous Allosaurus. The cranial biomechanics of Incisivosaurus align with oviraptorids, indicating an early establishment of distinctive strengthened cranial biomechanics in Oviraptorosauria, even before the highly modified oviraptorid cranial morphology. Bite modelling, using estimated muscle forces, suggests oviraptorid crania may have functioned closer to structural safety limits. Low mechanical stresses around the beaks of oviraptorids suggest a convergently evolved, functionally distinct rhamphotheca, serving as a cropping/feeding tool rather than for stress reduction, when compared with other herbivorous theropods.


Assuntos
Dinossauros , Fósseis , Animais , Crânio/anatomia & histologia , Dinossauros/anatomia & histologia , Herbivoria , Dieta
2.
Anat Rec (Hoboken) ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38646928

RESUMO

Elongated upper canine teeth, commonly known as saber-teeth, have evolved three times within the sub-order Feliformia. The species that wielded them flourished throughout the Cenozoic and have historically been separated into two morphological groups: the dirk-tooths with longer, flatter canines, and the scimitar-tooths with shorter, serrated teeth. However, quantitative morphological analysis has not been conducted on these teeth to determine the true amount of diversity within the group, and how the upper canine morphology of extant feliforms compared to their extinct relatives has also not been explored. Using Geometric Morphometric analysis, it is shown that saber-tooth upper canine morphology is exceptionally diverse, with no extant clade having all its members occupy the same morphospace based on tooth length and curvature. Instead, a neutral basal morphospace is observed for all groups and diversification from this basal position is seen as species become more derived. A distinct and consistent scimitar tooth morphology is also not observed within the morphospace. When compared with extant taxa, several saber-tooth species are seen to be morphologically similar to extant feliforms, several of which exhibit novel dietary strategies in comparison to the obligate carnivore felids. Biomechanical analyses of different actual and theoretical tooth shapes demonstrate that saber-teeth upper canines further represent a functional compromise between sharpness, curvature, and length on the one hand, and robustness and material investment on the other.

3.
Anat Rec (Hoboken) ; 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38613218

RESUMO

Saber-tooths, extinct apex predators with long and blade-like upper canines, have appeared iteratively at least five times in the evolutionary history of vertebrates. Although saber-tooths exhibit a relatively diverse range of morphologies, it is widely accepted that all killed their prey using the same predatory behavior. In this study, we CT-scanned the skull of Barbourofelis fricki and compared its cranial mechanics using finite element analysis (FEA) with that of Smilodon fatalis. Our aim was to investigate potential variations in killing behavior between two dirk-toothed sabretooths from the Miocene and Pleistocene of North America. The study revealed that B. fricki had a stoutly-built skull capable of withstanding stress in various prey-killing scenarios, while the skull of S. fatalis appeared less optimized for supporting stress, which highlights the highly derived saber-tooth morphology of the former. The results may indicate that B. fricki was more of a generalist in prey-killing compared to S. fatalis, which experiences lower stresses under stabbing loads. We hypothesize that morphological specialization in saber-tooths does not necessarily indicate ecological specialization. Our results support the notion that morphological convergence among saber-toothed cats may obscure differences in hunting strategies employed to dispatch their prey. Our findings challenge the assumption of the universally assumed canine-shear biting as the prey-killing behavior of all saber-toothed cats. However, further research involving a wider range of dirk and scimitar-toothed forms could provide additional insights into the diversity of cranial biomechanics within this fascinating group of extinct mammalian predators.

4.
Proc Biol Sci ; 291(2019): 20232258, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38531402

RESUMO

Attempts to explain the origin and diversification of vertebrates have commonly invoked the evolution of feeding ecology, contrasting the passive suspension feeding of invertebrate chordates and larval lampreys with active predation in living jawed vertebrates. Of the extinct jawless vertebrates that phylogenetically intercalate these living groups, the feeding apparatus is well-preserved only in the early diverging stem-gnathostome heterostracans. However, its anatomy remains poorly understood. Here, we use X-ray microtomography to characterize the feeding apparatus of the pteraspid heterostracan Rhinopteraspis dunensis (Roemer, 1855). The apparatus is composed of 13 plates arranged approximately bilaterally, most of which articulate from the postoral plate. Our reconstruction shows that the oral plates were capable of rotating around the transverse axis, but likely with limited movement. It also suggests the nasohypophyseal organs opened internally, into the pharynx. The functional morphology of the apparatus in Rhinopteraspis precludes all proposed interpretations of feeding except for suspension/deposit feeding and we interpret the apparatus as having served primarily to moderate the oral gape. This is consistent with evidence that at least some early jawless gnathostomes were suspension feeders and runs contrary to macroecological scenarios that envisage early vertebrate evolution as characterized by a directional trend towards increasingly active food acquisition.


Assuntos
Evolução Biológica , Fósseis , Animais , Peixes/anatomia & histologia , Vertebrados/anatomia & histologia , Arcada Osseodentária/anatomia & histologia , Filogenia
5.
Anat Rec (Hoboken) ; 307(3): 549-565, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37584310

RESUMO

Pseudosuchian archosaurs, reptiles more closely related to crocodylians than to birds, exhibited high morphological diversity during the Triassic and are thus associated with hypotheses of high ecological diversity during this time. One example involves basal loricatans which are non-crocodylomorph pseudosuchians traditionally known as "rauisuchians." Their large size (5-8+ m long) and morphological similarities to post-Triassic theropod dinosaurs, including dorsoventrally deep skulls and serrated dentitions, suggest basal loricatans were apex predators. However, this hypothesis does not consider functional behaviors that can influence more refined roles of predators in their environment, for example, degree of carcass utilization. Here, we apply finite element analysis to a juvenile but three-dimensionally well-preserved cranium of the basal loricatan Saurosuchus galilei to investigate its functional morphology and to compare with stress distributions from the theropod Allosaurus fragilis to assess degrees of functional convergence between Triassic and post-Triassic carnivores. We find similar stress distributions and magnitudes between the two study taxa under the same functional simulations, indicating that Saurosuchus had a somewhat strong skull and thus exhibited some degree of functional convergence with theropods. However, Saurosuchus also had a weak bite for an animal of its size (1015-1885 N) that is broadly equivalent to the bite force of modern gharials (Gavialis gangeticus). We infer that Saurosuchus potentially avoided tooth-bone interactions and consumed the softer parts of carcasses, unlike theropods and other basal loricatans. This deduced feeding mode for Saurosuchus increases the known functional diversity of basal loricatans and highlights functional differences between Triassic and post-Triassic apex predators.


Assuntos
Dinossauros , Dente , Animais , Dinossauros/anatomia & histologia , Répteis/anatomia & histologia , Dente/anatomia & histologia , Crânio/anatomia & histologia , Cabeça/anatomia & histologia , Fósseis , Evolução Biológica , Filogenia
6.
Nature ; 621(7980): 782-787, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37730987

RESUMO

The neurocranium is an integral part of the vertebrate head, itself a major evolutionary innovation1,2. However, its early history remains poorly understood, with great dissimilarity in form between the two living vertebrate groups: gnathostomes (jawed vertebrates) and cyclostomes (hagfishes and lampreys)2,3. The 100 Myr gap separating the Cambrian appearance of vertebrates4-6 from the earliest three-dimensionally preserved vertebrate neurocrania7 further obscures the origins of modern states. Here we use computed tomography to describe the cranial anatomy of an Ordovician stem-group gnathostome: Eriptychius americanus from the Harding Sandstone of Colorado, USA8. A fossilized head of Eriptychius preserves a symmetrical set of cartilages that we interpret as the preorbital neurocranium, enclosing the fronts of laterally placed orbits, terminally located mouth, olfactory bulbs and pineal organ. This suggests that, in the earliest gnathostomes, the neurocranium filled out the space between the dermal skeleton and brain, like in galeaspids, osteostracans and placoderms and unlike in cyclostomes2. However, these cartilages are not fused into a single neurocranial unit, suggesting that this is a derived gnathostome trait. Eriptychius fills a major temporal and phylogenetic gap in our understanding of the evolution of the gnathostome head, revealing a neurocranium with an anatomy unlike that of any previously described vertebrate.


Assuntos
Fósseis , Filogenia , Crânio , Vertebrados , Animais , Feiticeiras (Peixe)/anatomia & histologia , Imageamento Tridimensional , Lampreias/anatomia & histologia , Boca , Bulbo Olfatório , Glândula Pineal , Crânio/anatomia & histologia , Tomógrafos Computadorizados , Vertebrados/anatomia & histologia , Vertebrados/classificação , Colorado , Cartilagem/anatomia & histologia
7.
Commun Biol ; 6(1): 367, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-37046052

RESUMO

Skeletal simplification occurred in multiple vertebrate clades over the last 500 million years, including the evolution from premammalian cynodonts to mammals. This transition is characterised by the loss and reduction of cranial bones, the emergence of a novel jaw joint, and the rearrangement of the jaw musculature. These modifications have long been hypothesised to increase skull strength and efficiency during feeding. Here, we combine digital reconstruction and biomechanical modelling to show that there is no evidence for an increase in cranial strength and biomechanical performance. Our analyses demonstrate the selective functional reorganisation of the cranial skeleton, leading to reduced stresses in the braincase and the skull roof but increased stresses in the zygomatic region through this transition. This cranial functional reorganisation, reduction in mechanical advantage, and overall miniaturisation in body size are linked with a dietary specialisation to insectivory, permitting the subsequent morphological and ecological diversification of the mammalian lineage.


Assuntos
Evolução Biológica , Crânio , Animais , Filogenia , Crânio/anatomia & histologia , Vertebrados , Mamíferos/anatomia & histologia
8.
Curr Biol ; 33(3): 557-565.e7, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36603586

RESUMO

The extent to which evolution is deterministic is a key question in biology,1,2,3,4,5,6,7,8,9 with intensive debate on how adaptation6,10,11,12,13 and constraints14,15,16 might canalize solutions to ecological challenges.4,5,6 Alternatively, unique adaptations1,9,17 and phylogenetic contingency1,3,18 may render evolution fundamentally unpredictable.3 Information from the fossil record is critical to this debate,1,2,11 but performance data for extinct taxa are limited.7 This knowledge gap is significant, as general morphology may be a poor predictor of biomechanical performance.17,19,20 High-fiber herbivory originated multiple times within ornithischian dinosaurs,21 making them an ideal clade for investigating evolutionary responses to similar ecological pressures.22 However, previous biomechanical modeling studies on ornithischian crania17,23,24,25 have not compared early-diverging taxa spanning independent acquisitions of herbivory. Here, we perform finite-element analysis on the skull of five early-diverging members of the major ornithischian clades to characterize morphofunctional pathways to herbivory. Results reveal limited functional convergence among ornithischian clades, with each instead achieving comparable performance, in terms of reconstructed patterns and magnitudes of functionally induced stress, through different adaptations of the feeding apparatus. Thyreophorans compensated for plesiomorphic low performance through increased absolute size, heterodontosaurids expanded jaw adductor muscle volume, ornithopods increased jaw system efficiency, and ceratopsians combined these approaches. These distinct solutions to the challenges of herbivory within Ornithischia underpinned the success of this diverse clade. Furthermore, the resolution of multiple solutions to equivalent problems within a single clade through macroevolutionary time demonstrates that phenotypic evolution is not necessarily predictable, instead arising from the interplay of adaptation, innovation, contingency, and constraints.1,2,3,7,8,9,18.


Assuntos
Evolução Biológica , Dinossauros , Animais , Filogenia , Herbivoria , Crânio/anatomia & histologia , Fósseis , Dinossauros/anatomia & histologia
9.
J Anat ; 242(4): 553-567, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36485003

RESUMO

Cerdocyonina is a clade composed by the South-American canids in which the bush dog (Speothos venaticus) is one of the most elusive species. Known for its unique morphology within the group, this small, bear-like faced canid is the only member of the clade adapted to hypercarnivory, an almost exclusively meat-based diet currently present only in usually large, pack-hunting canids such as the grey wolf (Canis lupus). However, much of the biology of the bush dog is poorly understood, and inferences about its ecology, hunting strategies and diet are usually based on observation of captive individuals and anecdotal records, with reduced quantitative data to offer support. Here, we investigated the craniomandibular functional morphology of the bush dog through finite element analysis (FEA). FEA was employed to model the biting behaviour and to create extrinsic and intrinsic functional scenarios with different loads, corresponding to different bites used to subdue and process the prey. For comparison, the same modelling was applied to the skull of a grey wolf and a grey fox (Urocyon cinereoargenteus). Our analysis showed that the bush dog's responses to loading are more similar to the wolf's than to the fox's in most scenarios, suggesting a convergent craniomandibular functional morphology between these two hypercarnivorous species, despite their distinct phylogenetic positions and body sizes. Differences between the three taxa are noteworthy and suggested to be related to the size of the usual prey. The modelled bite force for the bush dog is relatively strong, about half of that estimated for the wolf and about 40% stronger than the fox's bite. The results strengthen with quantitative data the inferences of the bush dog as a pack-hunting predator with prey size similar to its own, such as large rodents and armadillos, being specialised in subduing and killing its prey using multiple bites. Its similarity to the wolf also confirms anecdotal accounts of predation on mammals that are much larger than itself, such as peccaries and tapirs. These data highlight the ecological specialisation of this small canid in a continent where large, pack-hunting canids are absent.


Assuntos
Canidae , Comportamento Predatório , Animais , Análise de Elementos Finitos , Raposas , Filogenia , Lobos
10.
Commun Biol ; 5(1): 754, 2022 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-35953708

RESUMO

The orbit is one of several skull openings in the archosauromorph skull. Intuitively, it could be assumed that orbit shape would closely approximate the shape and size of the eyeball resulting in a predominantly circular morphology. However, a quantification of orbit shape across Archosauromorpha using a geometric morphometric approach demonstrates a large morphological diversity despite the fact that the majority of species retained a circular orbit. This morphological diversity is nearly exclusively driven by large (skull length > 1000 mm) and carnivorous species in all studied archosauromorph groups, but particularly prominently in theropod dinosaurs. While circular orbit shapes are retained in most herbivores and smaller species, as well as in juveniles and early ontogenetic stages, large carnivores adopted elliptical and keyhole-shaped orbits. Biomechanical modelling using finite element analysis reveals that these morphologies are beneficial in mitigating and dissipating feeding-induced stresses without additional reinforcement of the bony structure of the skull.


Assuntos
Dinossauros , Órbita , Animais , Tamanho Corporal , Dieta , Dinossauros/anatomia & histologia , Fósseis , Órbita/anatomia & histologia
11.
R Soc Open Sci ; 9(8): 220519, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36039284

RESUMO

Accurate muscle reconstructions can offer new information on the anatomy of fossil organisms and are also important for biomechanical analysis (multibody dynamics and finite-element analysis (FEA)). For the sake of simplicity, muscles are often modelled as point-to-point strands or frustra (cut-off cones) in biomechanical models. However, there are cases in which it is useful to model the muscle morphology in three dimensions, to better examine the effects of muscle shape and size. This is especially important for fossil analyses, where muscle force is estimated from the reconstructed muscle morphology (rather than based on data collected in vivo). The two main aims of this paper are as follows. First, we created a new interactive tool in the free open access software Blender to enable interactive three-dimensional modelling of muscles. This approach can be applied to both palaeontological and human biomechanics research to generate muscle force magnitudes and lines of action for FEA. Second, we provide a guide on how to use existing Blender tools to reconstruct distorted or incomplete specimens. This guide is aimed at palaeontologists but can also be used by anatomists working with damaged specimens or to test functional implication of hypothetical morphologies.

12.
Anat Rec (Hoboken) ; 305(10): 3016-3030, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35723491

RESUMO

New imaging and biomechanical approaches have heralded a renaissance in our understanding of crocodylian anatomy. Here, we review a series of approaches in the preparation, imaging, and functional analysis of the jaw muscles of crocodylians. Iodine-contrast microCT approaches are enabling new insights into the anatomy of muscles, nerves, and other soft tissues of embryonic as well as adult specimens of alligators. These imaging data and other muscle modeling methods offer increased accuracy of muscle sizes and attachments without destructive methods like dissection. 3D modeling approaches and imaging data together now enable us to see and reconstruct 3D muscle architecture which then allows us to estimate 3D muscle resultants, but also measurements of pennation in ways not seen before. These methods have already revealed new information on the ontogeny, diversity, and function of jaw muscles and the heads of alligators and other crocodylians. Such approaches will lead to enhanced and accurate analyses of form, function, and evolution of crocodylians, their fossil ancestors and vertebrates in general.


Assuntos
Jacarés e Crocodilos , Iodo , Jacarés e Crocodilos/anatomia & histologia , Animais , Fósseis , Arcada Osseodentária/anatomia & histologia , Músculos/anatomia & histologia , Microtomografia por Raio-X
13.
Curr Biol ; 32(3): 677-686.e3, 2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-34919807

RESUMO

Theropod dinosaurs underwent some of the most remarkable dietary changes in vertebrate evolutionary history, shifting from ancestral carnivory1-3 to hypercarnivory4,5 and omnivory/herbivory,6-9 with some taxa eventually reverting to carnivory.10-12 The mandible is an important tool for food acquisition in vertebrates and reflects adaptations to feeding modes and diets.13,14 The morphofunctional modifications accompanying the dietary changes in theropod dinosaurs are not well understood because most of the previous studies focused solely on the cranium and/or were phylogenetically limited in scope,12,15-21 while studies that include multiple clades are usually based on linear measurements and/or discrete osteological characters.8,22 Given the potential relationship between macroevolutionary change and ontogenetic pattern,23 we explore whether functional morphological patterns observed in theropod mandibular evolution show similarities to the ontogenetic trajectory. Here, we use finite element analysis to study the mandibles of non-avialan coelurosaurian theropods and demonstrate how feeding mechanics vary between dietary groups and major clades. We reveal an overall reduction in feeding-induced stresses along all theropod lineages through time. This is facilitated by a post-dentary expansion and the development of a downturned dentary in herbivores and an upturned dentary in carnivores likely via the "curved bone effect." We also observed the same reduction in feeding-induced stress in an ontogenetic series of jaws of the tyrannosaurids Tarbosaurus and Tyrannosaurus, which is best attributed to bone functional adaptation. This suggests that this common tendency for structural strengthening of the theropod mandible through time, irrespective of diet, is linked to "functional peramorphosis" of bone functional adaptations acquired during ontogeny.


Assuntos
Dinossauros , Animais , Evolução Biológica , Carnivoridade , Dinossauros/anatomia & histologia , Fósseis , Filogenia , Crânio/anatomia & histologia
14.
Anat Rec (Hoboken) ; 305(10): 2435-2462, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-34841701

RESUMO

Pseudosuchians, archosaurian reptiles more closely related to crocodylians than to birds, exhibited high morphological diversity during the Triassic with numerous examples of morphological convergence described between Triassic pseudosuchians and post-Triassic dinosaurs. One example is the shuvosaurid Effigia okeeffeae which exhibits an "ostrich-like" bauplan comprising a gracile skeleton with edentulous jaws and large orbits, similar to ornithomimid dinosaurs and extant palaeognaths. This bauplan is regarded as an adaptation for herbivory, but this hypothesis assumes morphological convergence confers functional convergence, and has received little explicit testing. Here, we restore the skull morphology of Effigia, perform myological reconstructions, and apply finite element analysis to quantitatively investigate skull function. We also perform finite element analysis on the crania of the ornithomimid dinosaur Ornithomimus edmontonicus, the extant palaeognath Struthio camelus and the extant pseudosuchian Alligator mississippiensis to assess the degree of functional convergence with a taxon that exhibit "ostrich-like" bauplans and its closest extant relatives. We find that Effigia possesses a mosaic of mechanically strong and weak features, including a weak mandible that likely restricted feeding to the anterior portion of the jaws. We find limited functional convergence with Ornithomimus and Struthio and limited evidence of phylogenetic constraints with extant pseudosuchians. We infer that Effigia was a specialist herbivore that likely fed on softer plant material, a niche unique among the study taxa and potentially among contemporaneous Triassic herbivores. This study increases the known functional diversity of pseudosuchians and highlights that superficial morphological similarity between unrelated taxa does not always imply functional and ecological convergence.


Assuntos
Jacarés e Crocodilos , Dinossauros , Struthioniformes , Jacarés e Crocodilos/anatomia & histologia , Animais , Evolução Biológica , Dinossauros/anatomia & histologia , Fósseis , Filogenia , Crânio/anatomia & histologia
15.
iScience ; 24(11): 103182, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34761178

RESUMO

Palaeontologists often use finite element analyses, in which forces propagate through objects with specific material properties, to investigate feeding biomechanics. Teeth are usually modeled with uniform properties (all bone or all enamel). In reality, most teeth are composed of pulp, dentine, and enamel. We tested how simplified teeth compare to more realistic models using mandible models of three reptiles. For each, we created models representing enamel thicknesses found in extant taxa, as well as simplified models (bone, dentine or enamel). Our results suggest that general comparisons of stress distribution among distantly related taxa do not require representation of dental tissues, as there was no noticeable effect on heatmap representations of stress. However, we find that representation of dental tissues impacts bite force estimates, although magnitude of these effects may differ depending on constraints. Thus, as others have shown, the detail necessary in a biomechanical model relates to the questions being examined.

16.
R Soc Open Sci ; 8(11): 211357, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34804580

RESUMO

Accessibility is a key aspect for the presentation of research data. In palaeontology, new data is routinely obtained with computational techniques, such as finite-element analysis (FEA). FEA is used to calculate stress and deformation in objects when subjected to external forces. Results are displayed using contour plots in which colour information is used to convey the underlying biomechanical data. The Rainbow colour map is nearly exclusively used for these contour plots in palaeontological studies. However, numerous studies in other disciplines have shown the Rainbow map to be problematic due to uneven colour representation and its inaccessibility for those with colour vision deficiencies. Here, different colour maps were tested for their accuracy in representing values of FEA models. Differences in stress magnitudes (ΔS) and colour values (ΔE) of subsequent points from the FEA models were compared and their correlation was used as a measure of accuracy. The results confirm that the Rainbow colour map is not well suited to represent the underlying stress distribution of FEA models with other colour maps showing a higher discriminative power. As the performance of the colour maps varied with tested scenarios/stress types, it is recommended to use different colour maps for specific purposes.

17.
Praxis (Bern 1994) ; 110(14): 787-788, 2021.
Artigo em Alemão | MEDLINE | ID: mdl-34702055

RESUMO

CME Dermatology 24/Answers: Porokeratosis Abstract. Porokeratoses are a heterogeneous group of cornification disorders with the characteristic histological feature of the cornoid lamellae in the area of the marginal ridge. It is a rare but characteristic disease that occurs primarily in adulthood. Men are slightly more likely to be affected. The etiopathogenesis that leads to the transformation of the keratinocytes remains unclear; associations with genetic mutations and trigger factors such as UV rays and immunosuppression were observed. Due to the risk of malignant degeneration, consistent sun protection and regular clinical controls should take place. Cryotherapy, ablative laser therapy, curettage, photodynamic therapy or topical application of fluorouracil (5-FU), imiquimod and retinoids can be used to treat itchy, painful or cosmetically disturbing porokeratoses, depending on the location and severity.


Assuntos
Dermatologia , Poroceratose , Neoplasias Cutâneas , Adulto , Humanos , Masculino , Poroceratose/diagnóstico , Poroceratose/terapia , Raios Ultravioleta
18.
Praxis (Bern 1994) ; 110(13): 709-716, 2021 Sep.
Artigo em Alemão | MEDLINE | ID: mdl-34583541

RESUMO

CME Dermatology 24: Porokeratosis Abstract. Porokeratoses are a heterogeneous group of cornification disorders with the characteristic histological feature of the cornoid lamellae in the area of the marginal ridge. It is a rare but characteristic disease that occurs primarily in adulthood. Men are slightly more likely to be affected. The etiopathogenesis that leads to the transformation of the keratinocytes remains unclear; associations with genetic mutations and trigger factors such as UV rays and immunosuppression were observed. Due to the risk of malignant degeneration, consistent sun protection and regular clinical controls should take place. Cryotherapy, ablative laser therapy, curettage, photodynamic therapy or topical application of fluorouracil (5-FU), imiquimod and retinoids can be used to treat itchy, painful or cosmetically disturbing porokeratoses, depending on the location and severity.


Assuntos
Dermatologia , Poroceratose , Neoplasias Cutâneas , Adulto , Humanos , Masculino , Poroceratose/diagnóstico , Poroceratose/terapia , Raios Ultravioleta
19.
J Comp Neurol ; 529(18): 3922-3945, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34333763

RESUMO

Proa valdearinnoensis is a relatively large-headed and stocky iguanodontian dinosaur from the latest Early Cretaceous of Spain. Its braincase is known from three specimens. Similar to that of other dinosaurs, it shows a mosaic ossification pattern in which most of the bones seem to have fused together indistinguishably while a few (frontoparietal, basioccipital) might have remained loosely attached. The endocasts of the three specimens are described based on CT data and digital reconstructions. They show unmistakable morphological similarities with the endocast of closely related taxa, such as Sirindhorna khoratensis (which is close in age but from Thailand). This supports a high conservatism of the endocranial cavity. The issue of volumetric correspondence between endocranial cavity and brain in dinosaurs is analyzed. Although a brain-to-endocranial cavity (BEC) index of 0.50 has been traditionally used, we employ instead 0.73. This is indeed the mid-value between the situation in adults of Alligator mississippiensis and Gallus gallus, which are members of the extant bracketing taxa of dinosaurs (Crocodilia and Aves). We thence gauge the level of encephalization of P. valdearinnoensis through the calculation of the encephalization quotient (EQ), which remains valuable as a metric for assessing the degree of cognitive function in extinct taxa, especially those with fully ossified braincases like dinosaurs and other archosaurs. The EQ obtained for P. valdearinnoensis (3.611) suggests that this species was significantly more encephalized than most if not all extant nonavian, nonmammalian amniotes. Our work adds to the growing body of data concerning theoretical cognitive capabilities in dinosaurs and supports the idea that an increasing encephalization was fostered not only in theropods but also in parallel in the shorter-lived lineage of ornithopods. P. valdearinnoensis was ill-equipped to respond to theropod dinosaurs and possibly lived in groups as a strategy to mitigate the risk of being predated upon. We hypothesize that group-living and protracted caring of juveniles in this and possibly many other iguanodontian ornithopods favored a degree of encephalization that was outstanding by reptile standards.


Assuntos
Evolução Biológica , Cognição/fisiologia , Dinossauros/fisiologia , Fósseis , Crânio/anatomia & histologia , Animais , Encéfalo/anatomia & histologia , Filogenia
20.
Proc Biol Sci ; 288(1955): 20211176, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-34284622

RESUMO

Radiodonts evolved to become the largest nektonic predators in the Cambrian period, persisting into the Ordovician and perhaps up until the Devonian period. They used a pair of large frontal appendages together with a radial mouth apparatus to capture and manipulate their prey, and had evolved a range of species with distinct appendage morphologies by the Early Cambrian (approx. 521 Ma). However, since their discovery, there has been a lack of understanding about their basic functional anatomy, and thus their ecology. To explore radiodont modes of feeding, we have digitally modelled different appendage morphologies represented by Anomalocaris canadensis, Hurdia victoria, Peytoia nathorsti, Amplectobelua stephenensis and Cambroraster falcatus from the Burgess Shale. Our results corroborate ideas that there was probably a significant (functional and hence behavioural) diversity among different radiodont species with adaptations for feeding on differently sized prey (0.07 cm up to 10 cm). We argue here that Cambroraster falcatus appendages were suited for feeding on suspended particles rather than filtering sediment. Given the limited dexterity and lack of accessory feeding appendages as seen in modern arthropods, feeding must have been inefficient and 'messy', which may explain their subsequent replacement by crown-group arthropods, cephalopods and jawed vertebrates.


Assuntos
Artrópodes , Fósseis , Animais , Evolução Biológica , Ecologia , Extremidades/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...